Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.
Read less.Bladder cancer (BC) is a complex disease with multiple clinical manifestations and treatment challenges, and current standard-of-care therapies remain limited and unfavorable. Theranostics, the integration of diagnostic and therapeutic technologies, has emerged as a promising strategy to address these challenges. The rapid development of nanomedicine has been a source of hope for the improvement of BC therapies and diagnostics by reducing side effects, enhancing tumor suppression, and overcoming drug resistance. Metal nanoparticles (NPs), inorganic NPs, polymer NPs, etc. have their respective advantages and show encouraging potential in the therapy of BC. In this review, we provide an overview on the state of the art in nanotechnology-based theranostics for BC, offering insights into the design and discovery of novel NPs for future BC management.
Read less.Drug discovery is a long process, often taking decades of research endeavors. It is still an active area of research in both academic and industrial sectors with efforts on reducing time and cost. Computational simulations like molecular docking enable fast exploration of large databases of compounds and extract the most promising molecule candidates for further in vitro and in vivo tests. Structure-based molecular docking is a complex process mixing both surface exploration and energy estimation to find the minimal free energy of binding corresponding to the best interaction location.
Hereafter, heterogeneous graph score (HGScore), a new scoring function is proposed and is developed in the context of a protein-small compound-complex. Each complex is represented by a heterogeneous graph allowing to separate edges according to their class (inter- or intra-molecular). Then a heterogeneous graph convolutional network (HGCN) is used allowing the discrimination of the information according to the edge crossed. In the end, the model produces the affinity score of the complex.
HGScore has been tested on the comparative assessment of scoring functions (CASF) 2013 and 2016 benchmarks for scoring, ranking, and docking powers. It has achieved good performances by outperforming classical methods and being among the best artificial intelligence (AI) methods.
Thus, HGScore brings a new way to represent protein-ligand interactions. Using a representation that involves classical graph neural networks (GNNs) and splitting the learning process regarding the edge type makes the proposed model to be the best adapted for future transfer learning on other (protein-DNA, protein-sugar, protein-protein, etc.) biological complexes.
Peptides constitute an important component of Nature’s pharmacy and they play a significant role in several signaling pathways acting as natural biological messengers. While nature has mastered the cycle of creation, application, and destruction of large and short peptides to the benefit of the host organism, organic and medicinal chemists have in their capacity and small steps, made big developments in the field of peptide synthesis as well as in developing them as therapeutics. In comparison to their big counterparts, i.e. proteins, short peptides encompass several advantages, from the ease of synthesis to their physico-chemical properties. However, the real challenge for in vivo application of therapeutic peptides is to overcome their low plasma availability and their fast enzymatic degradation. This review briefly covers the relevant areas of medicinally important short peptides and the recent developments made to turn these peptides into therapeutics. Also presented in this article are important efforts and strategies used to overcome some of the inherent limitations of peptidic molecules and thereby facilitate their progression in the clinical phases towards approved drugs.
Read less.Identification of small bioactive regions in proteins and peptides can be useful information in drug design studies. The current study has shown that an inter-cysteine loop of the N-terminal domain of Opisthorchis viverrini granulin-1 (Ov-GRN-1), a granulin protein from the flatworm liver fluke Opisthorchis viverrini which has potent wound healing properties, maintains the bioactivity of the full-length protein.
Peptides corresponding to the three inter-cysteine loops of the N-terminal domain were produced using synthetic chemistry, and their structures and bioactivities were analyzed using nuclear magnetic resonance (NMR) spectroscopy and cell proliferation assays, respectively.
As expected for such small peptides, NMR analysis indicated that the peptides were poorly structured in solution. However, a seven-residue peptide corresponding to loop 2 (GRN-L2) promoted cell proliferation, in contrast to the other fragments.
The results from the current study suggest that GRN-L2 might be responsible, in part, for the bioactivity of Ov-GRN-1, and might be a useful lead molecule for subsequent wound healing studies.
Bacterial infections constitute one of the major cases of primary medical incidences worldwide. Historically, the fight against bacterial infections in humans has been an ongoing battle, due to the ability of bacteria to adapt and to survive. Indeed, bacteria have developed various mechanisms of resistance against several therapeutic agents. Consequently, the scientific community is always interested in search of new therapeutic agents, which are able to efficiently kill resistant-bacterial strains. This article covers the most recent antibacterial molecules approved by the Food and Drugs Administration (FDA) and European Medicines Agency (EMA) from 2012 to 2022 and intends to focus on synthetic derivatives to give a pedagogical view, with the goal of highlighting the importance of organic synthesis to obtain greater efficacy. A focus will be made on studies describing the structure and activity of the organic molecules and their interactions with their respective biological targets.
Read less.This study aims to report an engineered peptide zp39 with favorable bioactivity against enterohemorrhagic Escherichia coli (E. coli, EHEC). Its antibacterial mechanisms and application in a real food system are assessed.
Spatial conformation of synthetic peptide zp39 (GIIAGIIiKIKk-NH2, lowercase letters indicate dextrorotatory amino acids) was predicted by PEPstrMOD and its secondary structure was further determined by circular dichroism (CD) spectroscopy. Then, standard E. coli O157:H7 strain ATCC 43888 was used to evaluate the bioactivity of zp39. A double dilution method was applied to investigate its efficacy in normal broth medium, serum, and highly saline conditions. Its effects on cell membrane permeability and potential were measured by fluorescent assays. Thereafter, morphological changes of E. coli O157:H7 cells were monitored by electron microscopy technologies. Finally, the potential application of zp39 in controlling EHEC in food was tested with spinach juice and the Galleria mellonella larvae model was employed to assess the in vivo efficacy.
Peptide zp39 presented an amphiphilic helical structure. It effectively inhibited the growth of E. coli O157:H7 at a concentration of 4 μmol/L in a bactericidal mode. Mechanistic studies revealed that it affected membrane permeability and potential in a dose-dependent manner. Moreover, zp39 maintained satisfactory bioactivity against E. coli O157:H7 even in the presence of 70% serum or 1,000 μmol/L chloride salts. In spinach juice application, > 90% E. coli O157:H7 cells were killed within 2 h after exposure to 64 μmol/L zp39. In vivo study proved that treatment with 64 μmol/L zp39 could effectively boost the survival ratio of infected larvae by 50%.
This study depicts a synthetic dodecapeptide that shows the potential application in controlling EHEC. This molecule may be developed into a highly effective antimicrobial agent applied to prevent food contamination and associated infections.
Despite recent advancements in the field of neuro-ophthalmology, the rising rates of neurological and ophthalmological conditions, mismatches between supply and demand of clinicians, and an aging population underscore the urgent need to explore new therapeutic approaches within the field. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), traditionally used in the treatment of type 2 diabetes, are becoming increasingly appreciated for their diverse applications. Recently, GLP-1RAs have been approved for the treatment of obesity and recognized for their cardioprotective effects. Emerging evidence indicates some GLP-1RAs can cross the blood-brain barrier and may have neuroprotective effects. Therefore, this article aims to review the literature on the neurologic and neuro-ophthalmic role of glucagon-like peptide 1 (GLP-1). This article describes GLP-1 peptide characteristics and the mechanisms mediating its known role in increasing insulin, decreasing glucagon, delaying gastric emptying, and promoting satiety. This article identifies the sources and targets of GLP-1 in the brain and review the mechanisms which mediate its neuroprotective effects, as well as implications for Alzheimer’s disease (AD) and Parkinson’s disease (PD). Furthermore, the preclinical works which unravel the effects of GLP-1 in ocular dynamics and the preclinical literature regarding GLP-1RA use in the management of several neuro-ophthalmic conditions, including diabetic retinopathy (DR), glaucoma, and idiopathic intracranial hypertension (IIH) are discussed.
Read less.Nonalcoholic fatty liver disease (NAFLD), its more rapidly progressive steatohepatitic variant [nonalcoholic steatohepatitis, (NASH)], and the recently defined metabolic dysfunction-associated fatty liver disease (MAFLD) may be collectively alluded to as “metabolic fatty liver syndromes” (MFLS). MFLS is a common clinical complaint for which no licensed drug treatment is available and a public health issue posing a heaven burden on healthcare systems. Iron plays a key role in many of the key pathogenic steps concurring in the development and progression of MFLS, notably including genetics, intestinal dysbiosis, adipositis, insulin resistance, metaflammation, oxidative stress and ferroptosis, endoplasmic reticulum stress, and hepatic fibrosis. This notion raises the logical expectation that iron depletion, which can easily be implemented with venesection, might improve several aspects of MFLS. However, few published studies have globally failed to support these expectations. In conclusion, venesection in MFLS exhibits a strong biological rationale and possible metabolic benefits. However, confronted with failures in hepato-histological outcomes, data call for additional studies aimed to reconcile these inconsistencies.
Read less.The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), known to cause the coronavirus disease 2019 (COVID-19), was declared a pandemic in early 2020. During the past time, several infections control methods have been developed. Nevertheless, all of them have certain limitations: uncertainty in duration, limited efficacy of vaccines, and lack of effective drugs for COVID-19 treatment. So, the issue of creating drugs for symptomatic and etiotropic therapy is still relevant. This review summarizes the current knowledge of using natural compounds as anti-SARS-CoV-2 agents by analysing the results of in vitro studies and completed clinical trials (CTs). Also, this work highlighted the most active molecules and discussed the possibility of using some compounds in clinical practice.
Read less.The significance of β-amyloid protein as a key player in neuro-degenerative disorders viz. Alzheimer’s disease (AD), Parkinson’s disease (PD) has been extensively researched and reported. Glaucoma being another prominent form of neuro-degeneration involving the loss of retinal ganglion cells (RGCs) and human trabecular meshwork (HTM) cells, is also found to be similar to AD in many aspects, but its relation with β-amyloid has not been studied too far up to understanding its causation and pathogenesis where β-amyloid is expected to play important role. This study is an attempt to evaluate the chances of β-amyloid’s role in pathogenesis of retinal neurodegenerative disorder called glaucoma, in silico.
The study involved determination of feasibility of interaction between β-amyloid and well known glaucoma related proteins namely, myocilin and optineurin. The computational tool called Hex 8.0.0 has been used in this work.
The docking score for β-amyloid and myocilin was found to be –724.1 kJ mol–1 while that for β-amyloid and wild-type optineurin pair was found to be –296.9 kJ mol–1 and that for β-amyloid and mutated optineurin was –607.1 kJ mol–1.
Interaction of β-amyloid with myocilin and optineurin in both forms (wild-type and mutated) is quite energetically favorable. The binding between β-amyloid and mutated optineurin is higher in comparison to that between β-amyloid and wild-type optineurin. Thus, functional significance of β-amyloid in glaucoma pathogenesis is fairly possible which should be studied and proved through in vitro and in vivo studies.
Flavonoids present a large group of natural polyphenols with numerous important health benefits for preventing and treating a diverse variety of pathological conditions. However, the actual therapeutic use of these phytochemicals is impeded by their low oral bioavailability. In this commentary article, an interesting paradox is presented: while the ingested flavonoid glycosides can be absorbed by means of sodium-dependent glucose transporters (SGLTs; SGLT1) located in the brush border membrane facing the lumen of the small intestine, certain flavonoid aglycones are able to inhibit these shuttle proteins. It is expected that avoiding the co-intake of such SGLT1 inhibitors concomitantly with flavonoid-rich foods might provide a new option for enhancing the oral bioavailability of flavonoids, thereby preventing the transport of unabsorbed compounds to the large intestine and conversion into catabolites by the colonic microbiota. Altogether, the administration of flavonoids in appropriate combinations is highlighted for getting the maximal health benefits from consuming these bioactive compounds.
Read less.Thrombocytopenia is one of the most frequent implications of liver cirrhosis. This condition, when present in the severe form [platelet count (PLT) less than 50 × 109/L] correlates, with an increased risk of bleeding during the main diagnostic-therapeutic procedures which cirrhotic patients usually undergone. In these cases, generally, an infusion of platelets is performed, albeit in recent years has been replaced by a cycle of second generation thrombopoietin receptor (TpoR) agonists. This article reports two different cases concerning respectively an 83-year-old female patient suffering from arterial hypertension, aneurysm of the sub-renal aorta, hepatitis C virus (HCV)-positive liver cirrhosis responsive to treatment with antiviral drugs, and a 2.0 cm diameter hepatocellular carcinoma (HCC) nodule localized in the hepatic segment III and a 53-year-old female patient with HCV-positive liver cirrhosis complicated by portal hypertension with splenomegaly, thrombocytopenia, and F3 esophageal varices at high risk of bleeding. Both of them, eligible for invasive procedures such as HCC transarterial chemoembolization (TACE) and for esophageal variceal band ligation, were prescribed prophylaxis with TpoR agonists due to their severe and persistent thrombocytopenia. These two cases show how a short course of lusutrombopag allows to safely perform one or more invasive procedures and how the administration of the drug can be repeated without losing efficacy. Furthermore, this drug shows an excellent safety profile and avoids the risks of platelet transfusion. In conclusion, second generation TpoR agonists can be considered the prophylactic treatment of choice to reduce the risk of bleeding in patients with liver cirrhosis and severe thrombocytopenia.
Read less.The aim of this research work was to develop a validated reversed-phase (RP)-high-performance liquid chromatography (HPLC) method for simultaneous estimation of oxytetracycline (OXY) and polymixin B (PMB) in fixed-dose combination.
The HPLC assay method was validated on X-Bridge C18 [250 mm × 4.6 mm intradermal (i.d.), 5 μm], mobile phase consisting of aotearoa co-incidence network (ACN):water containing 0.5% (v/v) orthophosphoric acid (pH 3.5) in the ratio of 80:20 respectively. The flow rate was set at 0.9 mL/min and the column was maintained at room temperature. The RP-HPLC method was validated in terms of the calibration curve (CC), linearity and range, limit of detection (LOD), and limit of quantitation (LOQ), precision, robustness, and accuracy.
The method was found to be linear with a concentration range of 5–25 μg/mL. Precision results showed the developed method was found to be precise with a relative standard deviation [RSD (%)] value < 2. Accuracy showed acceptable recovery of prepared concentrations as per International Conference on Harmonization (ICH) guidelines. Moreover, the developed method was found to be robust and rugged, as per specified ranges. The assay of these two drugs in marketed formulation, i.e., Terramycin® Ointment showed satisfactory recovery, as per ICH guidelines. The results proved that the method can be used for the routine-based estimation of OXY and PMB.
Linear CC were obtained with a correlation coefficient (R2 > 0.99) with acceptable results of accuracy and precision.
Ultraviolet visible and HPLC method development
The development of a collaborative strategy with improved efficacy holds great promise in tumor treatment. This study aims to develop an effective collaborative strategy based on functionalized mesoporous polydopamine (MPDA) nanocomposites for killing tumor cells.
MPDA nanoparticles were synthesized and functionalized with camptothecin (CPT) payload and manganese dioxide (MnO2) coating to construct MPDA-CPT-MnO2 nanocomposites.
When uptaken by tumor cells, the nanocomposites can degrade to produce O2, release CPT, and generate manganese (Mn2+) under the stimulation of hydrogen peroxide (H2O2) and acid. The released CPT and Mn2+ can act as chemotherapeutic drug and Fenton-like agent, respectively. Abundant reactive oxygen species (ROS) are generated in 4T1 tumor cells through an Mn2+-mediated Fenton-like reaction. After that, the generated Mn4+ can react with glutathione (GSH) through redox reaction to produce Mn2+ and deplete GSH, disrupting the reducing capacity and benefiting the production of ROS in tumor cells. Under laser irradiation, the nanocomposites can generate hyperthermia to promote the production of ROS.
The developed MPDA-CPT-MnO2 nanocomposites can kill tumor cells through collaborative chemo/photothermal/chemodynamic therapy (CDT).
It is widely acknowledged that sialyl Lewis X (sLeX), the composition and linkage of which are N-acetylneuraminic acid (Neu5Ac) α2-3 galactose (Gal) β1-4 [fucose (Fuc) α1-3] N-acetylglucosamine, is usually attached to the cell surface. It presents as a terminal structure on either glycoproteins or glycolipids and has been demonstrated to be related to various biological processes, such as fertilization and selectin binding. Due to the vital role of sLeX, its synthesis as well as its determination approaches have attracted considerable attention from many researchers. In this review, the focus is sLeX on glycoproteins. The biological importance of sLeX in fertilization and development, immunity, cancers, and other aspects will be first introduced. Then the chemical and enzymatic synthesis of sLeX including the contributions from more than 15 international research groups will be described, followed by a brief view of the sLeX detection focusing on monosaccharides and linkages. This review is valuable for those readers who are interested in the chemistry and biology of sLeX.
Read less.Conventional techniques to share and archive spinal imaging data raise issues with trust and security, with novel approaches being more greatly considered. Ethereum smart contracts present one such novel approach. Ethereum is an open-source platform that allows for the use of smart contracts. Smart contracts are packages of code that are self-executing and reside in the Ethereum state, defining conditions for programmed transactions. Though powerful, limited attempts have been made to showcase the clinical utility of such technologies, especially in the pre- and post-operative imaging arenas. Herein, we therefore aim to propose a proof-of-concept smart contract that stores intraoperative three-dimensional (3D) augmented reality surgical navigation (ARSN) data and was tested on a private, proof-of-authority network. To the author’s best knowledge, the present study represents a first-use case of the InterPlanetary File Storage protocol for storing and retrieving spine imaging smart contracts.
The content identifier hashes were stored inside the smart contracts while the interplanetary file system (IPFS) was used to efficiently store the image files. Insertion was achieved with four storage mappings, one for each of the following: fictitious patient data, specific diagnosis, patient identity document (ID), and Gertzbein grade. Inserted patient observations were then queried with wildcards. Insertion and retrieval times for different record volumes were collected.
It took 276 milliseconds to insert 50 records and 713 milliseconds to insert 350 records. Inserting 50 records required 934 Megabyte (MB) of memory per insertion with patient data and imaging, while inserting 350 records required almost the same amount of memory per insertion. In a database of 350 records, the retrieval function needs about 1,026 MB to query a record with all three fields left blank, but only 970 MB to obtain the same observation from a database of 50 records.
The concept presented in this study exemplifies the clinical utility of smart contracts and off-chain data storage for efficient retrieval/insertion of ARSN data.
In the present study, the natural products levistolide A (LA) and periplogenin (PPG) were studied for their growth inhibitory effects on the development of gastric cancer cells in vitro and, more critically, in vivo, alone or in combination with the therapeutic medication 5-fluorouracil (5-FU).
Methyl thiazolyl tetrazolium (MTT), also known as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were used for the cell viability study. Apoptosis was detected by western blot to detect the cleavage of caspase substrate poly (ADP-ribose) polymerase (PARP) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) assays. The nude mice bearing gastric cancer cells were used for the anti-cancer activity detection of LA and its combinational treatment effect with 5-FU.
The results in the present study shown that the two compounds were able to inhibit the viability of the cancer cells in a dose- and time-dependent manner by MTT method. They could trigger apoptosis when used alone, and more potently, in combination with 5-FU detected by TUNEL positivity and the cleavage of caspase substrate PARP. In nude mice bearing gastric cancer cells, injection (i.p.) of LA or PPG alone inhibited the growth of the cancer cells. The treatment using one of the compounds in combination with 5-FU inhibited the cancer cell growth at a higher level than the treatment by a compound alone.
LA and PPG could inhibit the growth of the cancer cells, alone or in combination with 5-FU, in vitro and in vivo, suggesting that they are promising investigational drugs for therapeutic development.
Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.
Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.
Bladder cancer (BC) is a complex disease with multiple clinical manifestations and treatment challenges, and current standard-of-care therapies remain limited and unfavorable. Theranostics, the integration of diagnostic and therapeutic technologies, has emerged as a promising strategy to address these challenges. The rapid development of nanomedicine has been a source of hope for the improvement of BC therapies and diagnostics by reducing side effects, enhancing tumor suppression, and overcoming drug resistance. Metal nanoparticles (NPs), inorganic NPs, polymer NPs, etc. have their respective advantages and show encouraging potential in the therapy of BC. In this review, we provide an overview on the state of the art in nanotechnology-based theranostics for BC, offering insights into the design and discovery of novel NPs for future BC management.
Bladder cancer (BC) is a complex disease with multiple clinical manifestations and treatment challenges, and current standard-of-care therapies remain limited and unfavorable. Theranostics, the integration of diagnostic and therapeutic technologies, has emerged as a promising strategy to address these challenges. The rapid development of nanomedicine has been a source of hope for the improvement of BC therapies and diagnostics by reducing side effects, enhancing tumor suppression, and overcoming drug resistance. Metal nanoparticles (NPs), inorganic NPs, polymer NPs, etc. have their respective advantages and show encouraging potential in the therapy of BC. In this review, we provide an overview on the state of the art in nanotechnology-based theranostics for BC, offering insights into the design and discovery of novel NPs for future BC management.
Drug discovery is a long process, often taking decades of research endeavors. It is still an active area of research in both academic and industrial sectors with efforts on reducing time and cost. Computational simulations like molecular docking enable fast exploration of large databases of compounds and extract the most promising molecule candidates for further in vitro and in vivo tests. Structure-based molecular docking is a complex process mixing both surface exploration and energy estimation to find the minimal free energy of binding corresponding to the best interaction location.
Hereafter, heterogeneous graph score (HGScore), a new scoring function is proposed and is developed in the context of a protein-small compound-complex. Each complex is represented by a heterogeneous graph allowing to separate edges according to their class (inter- or intra-molecular). Then a heterogeneous graph convolutional network (HGCN) is used allowing the discrimination of the information according to the edge crossed. In the end, the model produces the affinity score of the complex.
HGScore has been tested on the comparative assessment of scoring functions (CASF) 2013 and 2016 benchmarks for scoring, ranking, and docking powers. It has achieved good performances by outperforming classical methods and being among the best artificial intelligence (AI) methods.
Thus, HGScore brings a new way to represent protein-ligand interactions. Using a representation that involves classical graph neural networks (GNNs) and splitting the learning process regarding the edge type makes the proposed model to be the best adapted for future transfer learning on other (protein-DNA, protein-sugar, protein-protein, etc.) biological complexes.
Drug discovery is a long process, often taking decades of research endeavors. It is still an active area of research in both academic and industrial sectors with efforts on reducing time and cost. Computational simulations like molecular docking enable fast exploration of large databases of compounds and extract the most promising molecule candidates for further in vitro and in vivo tests. Structure-based molecular docking is a complex process mixing both surface exploration and energy estimation to find the minimal free energy of binding corresponding to the best interaction location.
Hereafter, heterogeneous graph score (HGScore), a new scoring function is proposed and is developed in the context of a protein-small compound-complex. Each complex is represented by a heterogeneous graph allowing to separate edges according to their class (inter- or intra-molecular). Then a heterogeneous graph convolutional network (HGCN) is used allowing the discrimination of the information according to the edge crossed. In the end, the model produces the affinity score of the complex.
HGScore has been tested on the comparative assessment of scoring functions (CASF) 2013 and 2016 benchmarks for scoring, ranking, and docking powers. It has achieved good performances by outperforming classical methods and being among the best artificial intelligence (AI) methods.
Thus, HGScore brings a new way to represent protein-ligand interactions. Using a representation that involves classical graph neural networks (GNNs) and splitting the learning process regarding the edge type makes the proposed model to be the best adapted for future transfer learning on other (protein-DNA, protein-sugar, protein-protein, etc.) biological complexes.
Peptides constitute an important component of Nature’s pharmacy and they play a significant role in several signaling pathways acting as natural biological messengers. While nature has mastered the cycle of creation, application, and destruction of large and short peptides to the benefit of the host organism, organic and medicinal chemists have in their capacity and small steps, made big developments in the field of peptide synthesis as well as in developing them as therapeutics. In comparison to their big counterparts, i.e. proteins, short peptides encompass several advantages, from the ease of synthesis to their physico-chemical properties. However, the real challenge for in vivo application of therapeutic peptides is to overcome their low plasma availability and their fast enzymatic degradation. This review briefly covers the relevant areas of medicinally important short peptides and the recent developments made to turn these peptides into therapeutics. Also presented in this article are important efforts and strategies used to overcome some of the inherent limitations of peptidic molecules and thereby facilitate their progression in the clinical phases towards approved drugs.
Peptides constitute an important component of Nature’s pharmacy and they play a significant role in several signaling pathways acting as natural biological messengers. While nature has mastered the cycle of creation, application, and destruction of large and short peptides to the benefit of the host organism, organic and medicinal chemists have in their capacity and small steps, made big developments in the field of peptide synthesis as well as in developing them as therapeutics. In comparison to their big counterparts, i.e. proteins, short peptides encompass several advantages, from the ease of synthesis to their physico-chemical properties. However, the real challenge for in vivo application of therapeutic peptides is to overcome their low plasma availability and their fast enzymatic degradation. This review briefly covers the relevant areas of medicinally important short peptides and the recent developments made to turn these peptides into therapeutics. Also presented in this article are important efforts and strategies used to overcome some of the inherent limitations of peptidic molecules and thereby facilitate their progression in the clinical phases towards approved drugs.
Identification of small bioactive regions in proteins and peptides can be useful information in drug design studies. The current study has shown that an inter-cysteine loop of the N-terminal domain of Opisthorchis viverrini granulin-1 (Ov-GRN-1), a granulin protein from the flatworm liver fluke Opisthorchis viverrini which has potent wound healing properties, maintains the bioactivity of the full-length protein.
Peptides corresponding to the three inter-cysteine loops of the N-terminal domain were produced using synthetic chemistry, and their structures and bioactivities were analyzed using nuclear magnetic resonance (NMR) spectroscopy and cell proliferation assays, respectively.
As expected for such small peptides, NMR analysis indicated that the peptides were poorly structured in solution. However, a seven-residue peptide corresponding to loop 2 (GRN-L2) promoted cell proliferation, in contrast to the other fragments.
The results from the current study suggest that GRN-L2 might be responsible, in part, for the bioactivity of Ov-GRN-1, and might be a useful lead molecule for subsequent wound healing studies.
Identification of small bioactive regions in proteins and peptides can be useful information in drug design studies. The current study has shown that an inter-cysteine loop of the N-terminal domain of Opisthorchis viverrini granulin-1 (Ov-GRN-1), a granulin protein from the flatworm liver fluke Opisthorchis viverrini which has potent wound healing properties, maintains the bioactivity of the full-length protein.
Peptides corresponding to the three inter-cysteine loops of the N-terminal domain were produced using synthetic chemistry, and their structures and bioactivities were analyzed using nuclear magnetic resonance (NMR) spectroscopy and cell proliferation assays, respectively.
As expected for such small peptides, NMR analysis indicated that the peptides were poorly structured in solution. However, a seven-residue peptide corresponding to loop 2 (GRN-L2) promoted cell proliferation, in contrast to the other fragments.
The results from the current study suggest that GRN-L2 might be responsible, in part, for the bioactivity of Ov-GRN-1, and might be a useful lead molecule for subsequent wound healing studies.
Bacterial infections constitute one of the major cases of primary medical incidences worldwide. Historically, the fight against bacterial infections in humans has been an ongoing battle, due to the ability of bacteria to adapt and to survive. Indeed, bacteria have developed various mechanisms of resistance against several therapeutic agents. Consequently, the scientific community is always interested in search of new therapeutic agents, which are able to efficiently kill resistant-bacterial strains. This article covers the most recent antibacterial molecules approved by the Food and Drugs Administration (FDA) and European Medicines Agency (EMA) from 2012 to 2022 and intends to focus on synthetic derivatives to give a pedagogical view, with the goal of highlighting the importance of organic synthesis to obtain greater efficacy. A focus will be made on studies describing the structure and activity of the organic molecules and their interactions with their respective biological targets.
Bacterial infections constitute one of the major cases of primary medical incidences worldwide. Historically, the fight against bacterial infections in humans has been an ongoing battle, due to the ability of bacteria to adapt and to survive. Indeed, bacteria have developed various mechanisms of resistance against several therapeutic agents. Consequently, the scientific community is always interested in search of new therapeutic agents, which are able to efficiently kill resistant-bacterial strains. This article covers the most recent antibacterial molecules approved by the Food and Drugs Administration (FDA) and European Medicines Agency (EMA) from 2012 to 2022 and intends to focus on synthetic derivatives to give a pedagogical view, with the goal of highlighting the importance of organic synthesis to obtain greater efficacy. A focus will be made on studies describing the structure and activity of the organic molecules and their interactions with their respective biological targets.
This study aims to report an engineered peptide zp39 with favorable bioactivity against enterohemorrhagic Escherichia coli (E. coli, EHEC). Its antibacterial mechanisms and application in a real food system are assessed.
Spatial conformation of synthetic peptide zp39 (GIIAGIIiKIKk-NH2, lowercase letters indicate dextrorotatory amino acids) was predicted by PEPstrMOD and its secondary structure was further determined by circular dichroism (CD) spectroscopy. Then, standard E. coli O157:H7 strain ATCC 43888 was used to evaluate the bioactivity of zp39. A double dilution method was applied to investigate its efficacy in normal broth medium, serum, and highly saline conditions. Its effects on cell membrane permeability and potential were measured by fluorescent assays. Thereafter, morphological changes of E. coli O157:H7 cells were monitored by electron microscopy technologies. Finally, the potential application of zp39 in controlling EHEC in food was tested with spinach juice and the Galleria mellonella larvae model was employed to assess the in vivo efficacy.
Peptide zp39 presented an amphiphilic helical structure. It effectively inhibited the growth of E. coli O157:H7 at a concentration of 4 μmol/L in a bactericidal mode. Mechanistic studies revealed that it affected membrane permeability and potential in a dose-dependent manner. Moreover, zp39 maintained satisfactory bioactivity against E. coli O157:H7 even in the presence of 70% serum or 1,000 μmol/L chloride salts. In spinach juice application, > 90% E. coli O157:H7 cells were killed within 2 h after exposure to 64 μmol/L zp39. In vivo study proved that treatment with 64 μmol/L zp39 could effectively boost the survival ratio of infected larvae by 50%.
This study depicts a synthetic dodecapeptide that shows the potential application in controlling EHEC. This molecule may be developed into a highly effective antimicrobial agent applied to prevent food contamination and associated infections.
This study aims to report an engineered peptide zp39 with favorable bioactivity against enterohemorrhagic Escherichia coli (E. coli, EHEC). Its antibacterial mechanisms and application in a real food system are assessed.
Spatial conformation of synthetic peptide zp39 (GIIAGIIiKIKk-NH2, lowercase letters indicate dextrorotatory amino acids) was predicted by PEPstrMOD and its secondary structure was further determined by circular dichroism (CD) spectroscopy. Then, standard E. coli O157:H7 strain ATCC 43888 was used to evaluate the bioactivity of zp39. A double dilution method was applied to investigate its efficacy in normal broth medium, serum, and highly saline conditions. Its effects on cell membrane permeability and potential were measured by fluorescent assays. Thereafter, morphological changes of E. coli O157:H7 cells were monitored by electron microscopy technologies. Finally, the potential application of zp39 in controlling EHEC in food was tested with spinach juice and the Galleria mellonella larvae model was employed to assess the in vivo efficacy.
Peptide zp39 presented an amphiphilic helical structure. It effectively inhibited the growth of E. coli O157:H7 at a concentration of 4 μmol/L in a bactericidal mode. Mechanistic studies revealed that it affected membrane permeability and potential in a dose-dependent manner. Moreover, zp39 maintained satisfactory bioactivity against E. coli O157:H7 even in the presence of 70% serum or 1,000 μmol/L chloride salts. In spinach juice application, > 90% E. coli O157:H7 cells were killed within 2 h after exposure to 64 μmol/L zp39. In vivo study proved that treatment with 64 μmol/L zp39 could effectively boost the survival ratio of infected larvae by 50%.
This study depicts a synthetic dodecapeptide that shows the potential application in controlling EHEC. This molecule may be developed into a highly effective antimicrobial agent applied to prevent food contamination and associated infections.
Despite recent advancements in the field of neuro-ophthalmology, the rising rates of neurological and ophthalmological conditions, mismatches between supply and demand of clinicians, and an aging population underscore the urgent need to explore new therapeutic approaches within the field. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), traditionally used in the treatment of type 2 diabetes, are becoming increasingly appreciated for their diverse applications. Recently, GLP-1RAs have been approved for the treatment of obesity and recognized for their cardioprotective effects. Emerging evidence indicates some GLP-1RAs can cross the blood-brain barrier and may have neuroprotective effects. Therefore, this article aims to review the literature on the neurologic and neuro-ophthalmic role of glucagon-like peptide 1 (GLP-1). This article describes GLP-1 peptide characteristics and the mechanisms mediating its known role in increasing insulin, decreasing glucagon, delaying gastric emptying, and promoting satiety. This article identifies the sources and targets of GLP-1 in the brain and review the mechanisms which mediate its neuroprotective effects, as well as implications for Alzheimer’s disease (AD) and Parkinson’s disease (PD). Furthermore, the preclinical works which unravel the effects of GLP-1 in ocular dynamics and the preclinical literature regarding GLP-1RA use in the management of several neuro-ophthalmic conditions, including diabetic retinopathy (DR), glaucoma, and idiopathic intracranial hypertension (IIH) are discussed.
Despite recent advancements in the field of neuro-ophthalmology, the rising rates of neurological and ophthalmological conditions, mismatches between supply and demand of clinicians, and an aging population underscore the urgent need to explore new therapeutic approaches within the field. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), traditionally used in the treatment of type 2 diabetes, are becoming increasingly appreciated for their diverse applications. Recently, GLP-1RAs have been approved for the treatment of obesity and recognized for their cardioprotective effects. Emerging evidence indicates some GLP-1RAs can cross the blood-brain barrier and may have neuroprotective effects. Therefore, this article aims to review the literature on the neurologic and neuro-ophthalmic role of glucagon-like peptide 1 (GLP-1). This article describes GLP-1 peptide characteristics and the mechanisms mediating its known role in increasing insulin, decreasing glucagon, delaying gastric emptying, and promoting satiety. This article identifies the sources and targets of GLP-1 in the brain and review the mechanisms which mediate its neuroprotective effects, as well as implications for Alzheimer’s disease (AD) and Parkinson’s disease (PD). Furthermore, the preclinical works which unravel the effects of GLP-1 in ocular dynamics and the preclinical literature regarding GLP-1RA use in the management of several neuro-ophthalmic conditions, including diabetic retinopathy (DR), glaucoma, and idiopathic intracranial hypertension (IIH) are discussed.
Nonalcoholic fatty liver disease (NAFLD), its more rapidly progressive steatohepatitic variant [nonalcoholic steatohepatitis, (NASH)], and the recently defined metabolic dysfunction-associated fatty liver disease (MAFLD) may be collectively alluded to as “metabolic fatty liver syndromes” (MFLS). MFLS is a common clinical complaint for which no licensed drug treatment is available and a public health issue posing a heaven burden on healthcare systems. Iron plays a key role in many of the key pathogenic steps concurring in the development and progression of MFLS, notably including genetics, intestinal dysbiosis, adipositis, insulin resistance, metaflammation, oxidative stress and ferroptosis, endoplasmic reticulum stress, and hepatic fibrosis. This notion raises the logical expectation that iron depletion, which can easily be implemented with venesection, might improve several aspects of MFLS. However, few published studies have globally failed to support these expectations. In conclusion, venesection in MFLS exhibits a strong biological rationale and possible metabolic benefits. However, confronted with failures in hepato-histological outcomes, data call for additional studies aimed to reconcile these inconsistencies.
Nonalcoholic fatty liver disease (NAFLD), its more rapidly progressive steatohepatitic variant [nonalcoholic steatohepatitis, (NASH)], and the recently defined metabolic dysfunction-associated fatty liver disease (MAFLD) may be collectively alluded to as “metabolic fatty liver syndromes” (MFLS). MFLS is a common clinical complaint for which no licensed drug treatment is available and a public health issue posing a heaven burden on healthcare systems. Iron plays a key role in many of the key pathogenic steps concurring in the development and progression of MFLS, notably including genetics, intestinal dysbiosis, adipositis, insulin resistance, metaflammation, oxidative stress and ferroptosis, endoplasmic reticulum stress, and hepatic fibrosis. This notion raises the logical expectation that iron depletion, which can easily be implemented with venesection, might improve several aspects of MFLS. However, few published studies have globally failed to support these expectations. In conclusion, venesection in MFLS exhibits a strong biological rationale and possible metabolic benefits. However, confronted with failures in hepato-histological outcomes, data call for additional studies aimed to reconcile these inconsistencies.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), known to cause the coronavirus disease 2019 (COVID-19), was declared a pandemic in early 2020. During the past time, several infections control methods have been developed. Nevertheless, all of them have certain limitations: uncertainty in duration, limited efficacy of vaccines, and lack of effective drugs for COVID-19 treatment. So, the issue of creating drugs for symptomatic and etiotropic therapy is still relevant. This review summarizes the current knowledge of using natural compounds as anti-SARS-CoV-2 agents by analysing the results of in vitro studies and completed clinical trials (CTs). Also, this work highlighted the most active molecules and discussed the possibility of using some compounds in clinical practice.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), known to cause the coronavirus disease 2019 (COVID-19), was declared a pandemic in early 2020. During the past time, several infections control methods have been developed. Nevertheless, all of them have certain limitations: uncertainty in duration, limited efficacy of vaccines, and lack of effective drugs for COVID-19 treatment. So, the issue of creating drugs for symptomatic and etiotropic therapy is still relevant. This review summarizes the current knowledge of using natural compounds as anti-SARS-CoV-2 agents by analysing the results of in vitro studies and completed clinical trials (CTs). Also, this work highlighted the most active molecules and discussed the possibility of using some compounds in clinical practice.
The significance of β-amyloid protein as a key player in neuro-degenerative disorders viz. Alzheimer’s disease (AD), Parkinson’s disease (PD) has been extensively researched and reported. Glaucoma being another prominent form of neuro-degeneration involving the loss of retinal ganglion cells (RGCs) and human trabecular meshwork (HTM) cells, is also found to be similar to AD in many aspects, but its relation with β-amyloid has not been studied too far up to understanding its causation and pathogenesis where β-amyloid is expected to play important role. This study is an attempt to evaluate the chances of β-amyloid’s role in pathogenesis of retinal neurodegenerative disorder called glaucoma, in silico.
The study involved determination of feasibility of interaction between β-amyloid and well known glaucoma related proteins namely, myocilin and optineurin. The computational tool called Hex 8.0.0 has been used in this work.
The docking score for β-amyloid and myocilin was found to be –724.1 kJ mol–1 while that for β-amyloid and wild-type optineurin pair was found to be –296.9 kJ mol–1 and that for β-amyloid and mutated optineurin was –607.1 kJ mol–1.
Interaction of β-amyloid with myocilin and optineurin in both forms (wild-type and mutated) is quite energetically favorable. The binding between β-amyloid and mutated optineurin is higher in comparison to that between β-amyloid and wild-type optineurin. Thus, functional significance of β-amyloid in glaucoma pathogenesis is fairly possible which should be studied and proved through in vitro and in vivo studies.
The significance of β-amyloid protein as a key player in neuro-degenerative disorders viz. Alzheimer’s disease (AD), Parkinson’s disease (PD) has been extensively researched and reported. Glaucoma being another prominent form of neuro-degeneration involving the loss of retinal ganglion cells (RGCs) and human trabecular meshwork (HTM) cells, is also found to be similar to AD in many aspects, but its relation with β-amyloid has not been studied too far up to understanding its causation and pathogenesis where β-amyloid is expected to play important role. This study is an attempt to evaluate the chances of β-amyloid’s role in pathogenesis of retinal neurodegenerative disorder called glaucoma, in silico.
The study involved determination of feasibility of interaction between β-amyloid and well known glaucoma related proteins namely, myocilin and optineurin. The computational tool called Hex 8.0.0 has been used in this work.
The docking score for β-amyloid and myocilin was found to be –724.1 kJ mol–1 while that for β-amyloid and wild-type optineurin pair was found to be –296.9 kJ mol–1 and that for β-amyloid and mutated optineurin was –607.1 kJ mol–1.
Interaction of β-amyloid with myocilin and optineurin in both forms (wild-type and mutated) is quite energetically favorable. The binding between β-amyloid and mutated optineurin is higher in comparison to that between β-amyloid and wild-type optineurin. Thus, functional significance of β-amyloid in glaucoma pathogenesis is fairly possible which should be studied and proved through in vitro and in vivo studies.
Flavonoids present a large group of natural polyphenols with numerous important health benefits for preventing and treating a diverse variety of pathological conditions. However, the actual therapeutic use of these phytochemicals is impeded by their low oral bioavailability. In this commentary article, an interesting paradox is presented: while the ingested flavonoid glycosides can be absorbed by means of sodium-dependent glucose transporters (SGLTs; SGLT1) located in the brush border membrane facing the lumen of the small intestine, certain flavonoid aglycones are able to inhibit these shuttle proteins. It is expected that avoiding the co-intake of such SGLT1 inhibitors concomitantly with flavonoid-rich foods might provide a new option for enhancing the oral bioavailability of flavonoids, thereby preventing the transport of unabsorbed compounds to the large intestine and conversion into catabolites by the colonic microbiota. Altogether, the administration of flavonoids in appropriate combinations is highlighted for getting the maximal health benefits from consuming these bioactive compounds.
Flavonoids present a large group of natural polyphenols with numerous important health benefits for preventing and treating a diverse variety of pathological conditions. However, the actual therapeutic use of these phytochemicals is impeded by their low oral bioavailability. In this commentary article, an interesting paradox is presented: while the ingested flavonoid glycosides can be absorbed by means of sodium-dependent glucose transporters (SGLTs; SGLT1) located in the brush border membrane facing the lumen of the small intestine, certain flavonoid aglycones are able to inhibit these shuttle proteins. It is expected that avoiding the co-intake of such SGLT1 inhibitors concomitantly with flavonoid-rich foods might provide a new option for enhancing the oral bioavailability of flavonoids, thereby preventing the transport of unabsorbed compounds to the large intestine and conversion into catabolites by the colonic microbiota. Altogether, the administration of flavonoids in appropriate combinations is highlighted for getting the maximal health benefits from consuming these bioactive compounds.
Thrombocytopenia is one of the most frequent implications of liver cirrhosis. This condition, when present in the severe form [platelet count (PLT) less than 50 × 109/L] correlates, with an increased risk of bleeding during the main diagnostic-therapeutic procedures which cirrhotic patients usually undergone. In these cases, generally, an infusion of platelets is performed, albeit in recent years has been replaced by a cycle of second generation thrombopoietin receptor (TpoR) agonists. This article reports two different cases concerning respectively an 83-year-old female patient suffering from arterial hypertension, aneurysm of the sub-renal aorta, hepatitis C virus (HCV)-positive liver cirrhosis responsive to treatment with antiviral drugs, and a 2.0 cm diameter hepatocellular carcinoma (HCC) nodule localized in the hepatic segment III and a 53-year-old female patient with HCV-positive liver cirrhosis complicated by portal hypertension with splenomegaly, thrombocytopenia, and F3 esophageal varices at high risk of bleeding. Both of them, eligible for invasive procedures such as HCC transarterial chemoembolization (TACE) and for esophageal variceal band ligation, were prescribed prophylaxis with TpoR agonists due to their severe and persistent thrombocytopenia. These two cases show how a short course of lusutrombopag allows to safely perform one or more invasive procedures and how the administration of the drug can be repeated without losing efficacy. Furthermore, this drug shows an excellent safety profile and avoids the risks of platelet transfusion. In conclusion, second generation TpoR agonists can be considered the prophylactic treatment of choice to reduce the risk of bleeding in patients with liver cirrhosis and severe thrombocytopenia.
Thrombocytopenia is one of the most frequent implications of liver cirrhosis. This condition, when present in the severe form [platelet count (PLT) less than 50 × 109/L] correlates, with an increased risk of bleeding during the main diagnostic-therapeutic procedures which cirrhotic patients usually undergone. In these cases, generally, an infusion of platelets is performed, albeit in recent years has been replaced by a cycle of second generation thrombopoietin receptor (TpoR) agonists. This article reports two different cases concerning respectively an 83-year-old female patient suffering from arterial hypertension, aneurysm of the sub-renal aorta, hepatitis C virus (HCV)-positive liver cirrhosis responsive to treatment with antiviral drugs, and a 2.0 cm diameter hepatocellular carcinoma (HCC) nodule localized in the hepatic segment III and a 53-year-old female patient with HCV-positive liver cirrhosis complicated by portal hypertension with splenomegaly, thrombocytopenia, and F3 esophageal varices at high risk of bleeding. Both of them, eligible for invasive procedures such as HCC transarterial chemoembolization (TACE) and for esophageal variceal band ligation, were prescribed prophylaxis with TpoR agonists due to their severe and persistent thrombocytopenia. These two cases show how a short course of lusutrombopag allows to safely perform one or more invasive procedures and how the administration of the drug can be repeated without losing efficacy. Furthermore, this drug shows an excellent safety profile and avoids the risks of platelet transfusion. In conclusion, second generation TpoR agonists can be considered the prophylactic treatment of choice to reduce the risk of bleeding in patients with liver cirrhosis and severe thrombocytopenia.
The aim of this research work was to develop a validated reversed-phase (RP)-high-performance liquid chromatography (HPLC) method for simultaneous estimation of oxytetracycline (OXY) and polymixin B (PMB) in fixed-dose combination.
The HPLC assay method was validated on X-Bridge C18 [250 mm × 4.6 mm intradermal (i.d.), 5 μm], mobile phase consisting of aotearoa co-incidence network (ACN):water containing 0.5% (v/v) orthophosphoric acid (pH 3.5) in the ratio of 80:20 respectively. The flow rate was set at 0.9 mL/min and the column was maintained at room temperature. The RP-HPLC method was validated in terms of the calibration curve (CC), linearity and range, limit of detection (LOD), and limit of quantitation (LOQ), precision, robustness, and accuracy.
The method was found to be linear with a concentration range of 5–25 μg/mL. Precision results showed the developed method was found to be precise with a relative standard deviation [RSD (%)] value < 2. Accuracy showed acceptable recovery of prepared concentrations as per International Conference on Harmonization (ICH) guidelines. Moreover, the developed method was found to be robust and rugged, as per specified ranges. The assay of these two drugs in marketed formulation, i.e., Terramycin® Ointment showed satisfactory recovery, as per ICH guidelines. The results proved that the method can be used for the routine-based estimation of OXY and PMB.
Linear CC were obtained with a correlation coefficient (R2 > 0.99) with acceptable results of accuracy and precision.
Ultraviolet visible and HPLC method development
The aim of this research work was to develop a validated reversed-phase (RP)-high-performance liquid chromatography (HPLC) method for simultaneous estimation of oxytetracycline (OXY) and polymixin B (PMB) in fixed-dose combination.
The HPLC assay method was validated on X-Bridge C18 [250 mm × 4.6 mm intradermal (i.d.), 5 μm], mobile phase consisting of aotearoa co-incidence network (ACN):water containing 0.5% (v/v) orthophosphoric acid (pH 3.5) in the ratio of 80:20 respectively. The flow rate was set at 0.9 mL/min and the column was maintained at room temperature. The RP-HPLC method was validated in terms of the calibration curve (CC), linearity and range, limit of detection (LOD), and limit of quantitation (LOQ), precision, robustness, and accuracy.
The method was found to be linear with a concentration range of 5–25 μg/mL. Precision results showed the developed method was found to be precise with a relative standard deviation [RSD (%)] value < 2. Accuracy showed acceptable recovery of prepared concentrations as per International Conference on Harmonization (ICH) guidelines. Moreover, the developed method was found to be robust and rugged, as per specified ranges. The assay of these two drugs in marketed formulation, i.e., Terramycin® Ointment showed satisfactory recovery, as per ICH guidelines. The results proved that the method can be used for the routine-based estimation of OXY and PMB.
Linear CC were obtained with a correlation coefficient (R2 > 0.99) with acceptable results of accuracy and precision.
Ultraviolet visible and HPLC method development
The development of a collaborative strategy with improved efficacy holds great promise in tumor treatment. This study aims to develop an effective collaborative strategy based on functionalized mesoporous polydopamine (MPDA) nanocomposites for killing tumor cells.
MPDA nanoparticles were synthesized and functionalized with camptothecin (CPT) payload and manganese dioxide (MnO2) coating to construct MPDA-CPT-MnO2 nanocomposites.
When uptaken by tumor cells, the nanocomposites can degrade to produce O2, release CPT, and generate manganese (Mn2+) under the stimulation of hydrogen peroxide (H2O2) and acid. The released CPT and Mn2+ can act as chemotherapeutic drug and Fenton-like agent, respectively. Abundant reactive oxygen species (ROS) are generated in 4T1 tumor cells through an Mn2+-mediated Fenton-like reaction. After that, the generated Mn4+ can react with glutathione (GSH) through redox reaction to produce Mn2+ and deplete GSH, disrupting the reducing capacity and benefiting the production of ROS in tumor cells. Under laser irradiation, the nanocomposites can generate hyperthermia to promote the production of ROS.
The developed MPDA-CPT-MnO2 nanocomposites can kill tumor cells through collaborative chemo/photothermal/chemodynamic therapy (CDT).
The development of a collaborative strategy with improved efficacy holds great promise in tumor treatment. This study aims to develop an effective collaborative strategy based on functionalized mesoporous polydopamine (MPDA) nanocomposites for killing tumor cells.
MPDA nanoparticles were synthesized and functionalized with camptothecin (CPT) payload and manganese dioxide (MnO2) coating to construct MPDA-CPT-MnO2 nanocomposites.
When uptaken by tumor cells, the nanocomposites can degrade to produce O2, release CPT, and generate manganese (Mn2+) under the stimulation of hydrogen peroxide (H2O2) and acid. The released CPT and Mn2+ can act as chemotherapeutic drug and Fenton-like agent, respectively. Abundant reactive oxygen species (ROS) are generated in 4T1 tumor cells through an Mn2+-mediated Fenton-like reaction. After that, the generated Mn4+ can react with glutathione (GSH) through redox reaction to produce Mn2+ and deplete GSH, disrupting the reducing capacity and benefiting the production of ROS in tumor cells. Under laser irradiation, the nanocomposites can generate hyperthermia to promote the production of ROS.
The developed MPDA-CPT-MnO2 nanocomposites can kill tumor cells through collaborative chemo/photothermal/chemodynamic therapy (CDT).
It is widely acknowledged that sialyl Lewis X (sLeX), the composition and linkage of which are N-acetylneuraminic acid (Neu5Ac) α2-3 galactose (Gal) β1-4 [fucose (Fuc) α1-3] N-acetylglucosamine, is usually attached to the cell surface. It presents as a terminal structure on either glycoproteins or glycolipids and has been demonstrated to be related to various biological processes, such as fertilization and selectin binding. Due to the vital role of sLeX, its synthesis as well as its determination approaches have attracted considerable attention from many researchers. In this review, the focus is sLeX on glycoproteins. The biological importance of sLeX in fertilization and development, immunity, cancers, and other aspects will be first introduced. Then the chemical and enzymatic synthesis of sLeX including the contributions from more than 15 international research groups will be described, followed by a brief view of the sLeX detection focusing on monosaccharides and linkages. This review is valuable for those readers who are interested in the chemistry and biology of sLeX.
It is widely acknowledged that sialyl Lewis X (sLeX), the composition and linkage of which are N-acetylneuraminic acid (Neu5Ac) α2-3 galactose (Gal) β1-4 [fucose (Fuc) α1-3] N-acetylglucosamine, is usually attached to the cell surface. It presents as a terminal structure on either glycoproteins or glycolipids and has been demonstrated to be related to various biological processes, such as fertilization and selectin binding. Due to the vital role of sLeX, its synthesis as well as its determination approaches have attracted considerable attention from many researchers. In this review, the focus is sLeX on glycoproteins. The biological importance of sLeX in fertilization and development, immunity, cancers, and other aspects will be first introduced. Then the chemical and enzymatic synthesis of sLeX including the contributions from more than 15 international research groups will be described, followed by a brief view of the sLeX detection focusing on monosaccharides and linkages. This review is valuable for those readers who are interested in the chemistry and biology of sLeX.
Conventional techniques to share and archive spinal imaging data raise issues with trust and security, with novel approaches being more greatly considered. Ethereum smart contracts present one such novel approach. Ethereum is an open-source platform that allows for the use of smart contracts. Smart contracts are packages of code that are self-executing and reside in the Ethereum state, defining conditions for programmed transactions. Though powerful, limited attempts have been made to showcase the clinical utility of such technologies, especially in the pre- and post-operative imaging arenas. Herein, we therefore aim to propose a proof-of-concept smart contract that stores intraoperative three-dimensional (3D) augmented reality surgical navigation (ARSN) data and was tested on a private, proof-of-authority network. To the author’s best knowledge, the present study represents a first-use case of the InterPlanetary File Storage protocol for storing and retrieving spine imaging smart contracts.
The content identifier hashes were stored inside the smart contracts while the interplanetary file system (IPFS) was used to efficiently store the image files. Insertion was achieved with four storage mappings, one for each of the following: fictitious patient data, specific diagnosis, patient identity document (ID), and Gertzbein grade. Inserted patient observations were then queried with wildcards. Insertion and retrieval times for different record volumes were collected.
It took 276 milliseconds to insert 50 records and 713 milliseconds to insert 350 records. Inserting 50 records required 934 Megabyte (MB) of memory per insertion with patient data and imaging, while inserting 350 records required almost the same amount of memory per insertion. In a database of 350 records, the retrieval function needs about 1,026 MB to query a record with all three fields left blank, but only 970 MB to obtain the same observation from a database of 50 records.
The concept presented in this study exemplifies the clinical utility of smart contracts and off-chain data storage for efficient retrieval/insertion of ARSN data.
Conventional techniques to share and archive spinal imaging data raise issues with trust and security, with novel approaches being more greatly considered. Ethereum smart contracts present one such novel approach. Ethereum is an open-source platform that allows for the use of smart contracts. Smart contracts are packages of code that are self-executing and reside in the Ethereum state, defining conditions for programmed transactions. Though powerful, limited attempts have been made to showcase the clinical utility of such technologies, especially in the pre- and post-operative imaging arenas. Herein, we therefore aim to propose a proof-of-concept smart contract that stores intraoperative three-dimensional (3D) augmented reality surgical navigation (ARSN) data and was tested on a private, proof-of-authority network. To the author’s best knowledge, the present study represents a first-use case of the InterPlanetary File Storage protocol for storing and retrieving spine imaging smart contracts.
The content identifier hashes were stored inside the smart contracts while the interplanetary file system (IPFS) was used to efficiently store the image files. Insertion was achieved with four storage mappings, one for each of the following: fictitious patient data, specific diagnosis, patient identity document (ID), and Gertzbein grade. Inserted patient observations were then queried with wildcards. Insertion and retrieval times for different record volumes were collected.
It took 276 milliseconds to insert 50 records and 713 milliseconds to insert 350 records. Inserting 50 records required 934 Megabyte (MB) of memory per insertion with patient data and imaging, while inserting 350 records required almost the same amount of memory per insertion. In a database of 350 records, the retrieval function needs about 1,026 MB to query a record with all three fields left blank, but only 970 MB to obtain the same observation from a database of 50 records.
The concept presented in this study exemplifies the clinical utility of smart contracts and off-chain data storage for efficient retrieval/insertion of ARSN data.
In the present study, the natural products levistolide A (LA) and periplogenin (PPG) were studied for their growth inhibitory effects on the development of gastric cancer cells in vitro and, more critically, in vivo, alone or in combination with the therapeutic medication 5-fluorouracil (5-FU).
Methyl thiazolyl tetrazolium (MTT), also known as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were used for the cell viability study. Apoptosis was detected by western blot to detect the cleavage of caspase substrate poly (ADP-ribose) polymerase (PARP) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) assays. The nude mice bearing gastric cancer cells were used for the anti-cancer activity detection of LA and its combinational treatment effect with 5-FU.
The results in the present study shown that the two compounds were able to inhibit the viability of the cancer cells in a dose- and time-dependent manner by MTT method. They could trigger apoptosis when used alone, and more potently, in combination with 5-FU detected by TUNEL positivity and the cleavage of caspase substrate PARP. In nude mice bearing gastric cancer cells, injection (i.p.) of LA or PPG alone inhibited the growth of the cancer cells. The treatment using one of the compounds in combination with 5-FU inhibited the cancer cell growth at a higher level than the treatment by a compound alone.
LA and PPG could inhibit the growth of the cancer cells, alone or in combination with 5-FU, in vitro and in vivo, suggesting that they are promising investigational drugs for therapeutic development.
In the present study, the natural products levistolide A (LA) and periplogenin (PPG) were studied for their growth inhibitory effects on the development of gastric cancer cells in vitro and, more critically, in vivo, alone or in combination with the therapeutic medication 5-fluorouracil (5-FU).
Methyl thiazolyl tetrazolium (MTT), also known as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were used for the cell viability study. Apoptosis was detected by western blot to detect the cleavage of caspase substrate poly (ADP-ribose) polymerase (PARP) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) assays. The nude mice bearing gastric cancer cells were used for the anti-cancer activity detection of LA and its combinational treatment effect with 5-FU.
The results in the present study shown that the two compounds were able to inhibit the viability of the cancer cells in a dose- and time-dependent manner by MTT method. They could trigger apoptosis when used alone, and more potently, in combination with 5-FU detected by TUNEL positivity and the cleavage of caspase substrate PARP. In nude mice bearing gastric cancer cells, injection (i.p.) of LA or PPG alone inhibited the growth of the cancer cells. The treatment using one of the compounds in combination with 5-FU inhibited the cancer cell growth at a higher level than the treatment by a compound alone.
LA and PPG could inhibit the growth of the cancer cells, alone or in combination with 5-FU, in vitro and in vivo, suggesting that they are promising investigational drugs for therapeutic development.