From:  Artificial intelligence facilitates clinical management of epithelial dysplasia in multiple organs

Artificial intelligence (AI) model for histological grading and prognostic identification of various epithelial dysplasia

OrganPurposeWSI scanning systemMagnificationPatchesAI modelModel performanceReference
Oral cavityHistological gradingAperio20×299 × 299 pixelsVGG16Testing AUC: 0.65Araújo et al. [16], Brazil (2023)
Prognostic identificationNanozoomer20×512 × 512 pixelsResNet50 and lightGBMTesting AUC: 0.81 (95% CI, 0.73–0.90)Cai et al. [3], China (2023)
Aperio, Nanozoomer20×, 40×512 × 512 pixelsIDaRSTesting AUC: 0.78Bashir et al. [12], UK (2023)
Aperio, Nanozoomer10×NANuClick (for cell detection)Testing AUC: 0.76 (95% CI, 0.68–0.85)Mahmood et al. [11], UK (2023)
LarynxHistological gradingNanozoomer20×224 × 224 pixelsDenseNet121Testing AUC: 0.89 (95% CI, 0.81–0.95)Lubrano et al. [2], France (2024)
EsophagusHistological gradingMirax Desk20×224 × 224 pixelsResNet50Testing AUC: 0.80Beuque et al. [9], Netherlands (2021)
Aperio40×1,280 × 1,280 pixelsYOLOv5 and ResNet1010.89 accuracy for 3-class, 0.96 accuracy for 2-classFaghani et al. [5], USA (2022)
StomachHistological gradingIscan Coreo20×320 × 320 pixelsResNet50 and domain adaptionTesting AUC: 0.82Shi et al. [4], China (2022)
ColorectumHistological gradingAT220×224 × 224 pixelsResNet18Testing AUC: 0.97 (95% CI, 0.95–0.99)Kim et al. [15], USA (2023)
CervixHistological gradingPloidyScanner20×224 × 224 pixelsVGG16Testing AUC: 0.76 (95% CI, 0.73–0.78)Bao et al. [8], China (2020)

WSI: whole slide image; lightGBM: light gradient boosting machine; IDaRS: iterative draw-and-rank sampling; AUC: area under the receiver operating characteristic curve; 95% CI: lower and upper values of the 95% confidence interval; NA: not applicable; VGG16: visual geometry group 16; ResNet50: residual neural network 50; DenseNet121: dense convolutional network 121; YOLOv5: You Only Look Once version 5