Several studies investigated the side effect of adjuvant cancer treatments, and different types of preventive techniques or treatments have been assessed. Chemotherapy-induced peripheral neuropathy [...] Read more.
Several studies investigated the side effect of adjuvant cancer treatments, and different types of preventive techniques or treatments have been assessed. Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurological side effect. Exercise training has been widely studied as an adjuvant therapy to prevent CIPN and improve post-chemotherapy functional outcome and quality of life (QoL). This narrative review aims to summarize the data obtained from the latest studies about physical activity (PA) for the prevention and treatment of CIPN and associated QoL measures. Literature research was conducted to obtain studies including PA interventions for patients with CIPN. Ten studies met inclusion criteria and were therefore summarized and discussed, focusing on exercise type and functional outcome. It seems clear that, regardless of the type of exercise, PA plays a positive role in the treatment of CIPN, providing a significant symptom improvement. There has been no standardization of type, quantity, and intensity of PA administered to the subjects in the various studies probably due to a physiological difference between samples, grade of neuropathy, and difference among therapies.
Several studies investigated the side effect of adjuvant cancer treatments, and different types of preventive techniques or treatments have been assessed. Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurological side effect. Exercise training has been widely studied as an adjuvant therapy to prevent CIPN and improve post-chemotherapy functional outcome and quality of life (QoL). This narrative review aims to summarize the data obtained from the latest studies about physical activity (PA) for the prevention and treatment of CIPN and associated QoL measures. Literature research was conducted to obtain studies including PA interventions for patients with CIPN. Ten studies met inclusion criteria and were therefore summarized and discussed, focusing on exercise type and functional outcome. It seems clear that, regardless of the type of exercise, PA plays a positive role in the treatment of CIPN, providing a significant symptom improvement. There has been no standardization of type, quantity, and intensity of PA administered to the subjects in the various studies probably due to a physiological difference between samples, grade of neuropathy, and difference among therapies.
Altered immunity may have destructive consequences for the integrated central nervous system. This immune response often affects progressive neurodegenerative diseases such as Parkinson’s disease and/or psychiatric disorders suc [...] Read more.
Altered immunity may have destructive consequences for the integrated central nervous system. This immune response often affects progressive neurodegenerative diseases such as Parkinson’s disease and/or psychiatric disorders such as schizophrenia. In particular, schizophrenia pathogenesis may be mediated by multiple neuro-immune interaction pathways. Gut microbiota might affect the brain and/or immune function. Significant machineries of immunity are commonly affected by the commensal gut microbiota. Therefore, schizophrenia may be connected with the gut-immune system. In addition, the brain and immune systems cooperate on multiple levels. The brain could save several pieces of information about specific inflammation in a body. This immunological memory named “engrams”, also called memory traces, could restore the initial disease state, which may help to explain key features of schizophrenia. Based on this concept, therapeutic strategies for schizophrenia could be the modification of the gut microbiota. Probiotics and/or fecal microbiota transplantation are now emerging as the most promising treatments for the modification. More consideration of the roles of gut microbiota will conduct the further development of immune-based therapeutics for the prevention and/or treatments of psychiatric disorders.
Altered immunity may have destructive consequences for the integrated central nervous system. This immune response often affects progressive neurodegenerative diseases such as Parkinson’s disease and/or psychiatric disorders such as schizophrenia. In particular, schizophrenia pathogenesis may be mediated by multiple neuro-immune interaction pathways. Gut microbiota might affect the brain and/or immune function. Significant machineries of immunity are commonly affected by the commensal gut microbiota. Therefore, schizophrenia may be connected with the gut-immune system. In addition, the brain and immune systems cooperate on multiple levels. The brain could save several pieces of information about specific inflammation in a body. This immunological memory named “engrams”, also called memory traces, could restore the initial disease state, which may help to explain key features of schizophrenia. Based on this concept, therapeutic strategies for schizophrenia could be the modification of the gut microbiota. Probiotics and/or fecal microbiota transplantation are now emerging as the most promising treatments for the modification. More consideration of the roles of gut microbiota will conduct the further development of immune-based therapeutics for the prevention and/or treatments of psychiatric disorders.
Subarachnoid hemorrhage (SAH) has deleterious outcomes for patients, and during the hospital stay, patients are susceptible to vasospasm and delayed cerebral ischemia. Coronavirus disease 2019 (COVI [...] Read more.
Subarachnoid hemorrhage (SAH) has deleterious outcomes for patients, and during the hospital stay, patients are susceptible to vasospasm and delayed cerebral ischemia. Coronavirus disease 2019 (COVID-19) has been shown to worsen hypertension through angiotensin-converting enzyme 2 (ACE2) activity, therefore, predisposing to aneurysm rupture. The classic renin-angiotensin pathway activation also predisposes to vasospasm and subsequent delayed cerebral ischemia. Matrix metalloproteinase 9 upregulation can lead to an inflammatory surge, which worsens outcomes for patients. SAH patients with COVID-19 are more susceptible to ventilator-associated pneumonia, reversible cerebral vasoconstriction syndrome, and respiratory distress. Emerging treatments are warranted to target key components of the anti-inflammatory cascade. The aim of this review is to explore how the COVID-19 virus and the intensive care unit (ICU) treatment of severe COVID can contribute to SAH.
Broad effects of COVID-19 on inducing SAH. Created with BioRender.com. RBC: red blood cell; MMP-9: matrix metalloproteinase 9
Subarachnoid hemorrhage (SAH) has deleterious outcomes for patients, and during the hospital stay, patients are susceptible to vasospasm and delayed cerebral ischemia. Coronavirus disease 2019 (COVID-19) has been shown to worsen hypertension through angiotensin-converting enzyme 2 (ACE2) activity, therefore, predisposing to aneurysm rupture. The classic renin-angiotensin pathway activation also predisposes to vasospasm and subsequent delayed cerebral ischemia. Matrix metalloproteinase 9 upregulation can lead to an inflammatory surge, which worsens outcomes for patients. SAH patients with COVID-19 are more susceptible to ventilator-associated pneumonia, reversible cerebral vasoconstriction syndrome, and respiratory distress. Emerging treatments are warranted to target key components of the anti-inflammatory cascade. The aim of this review is to explore how the COVID-19 virus and the intensive care unit (ICU) treatment of severe COVID can contribute to SAH.
Broad effects of COVID-19 on inducing SAH. Created with BioRender.com. RBC: red blood cell; MMP-9: matrix metalloproteinase 9