Harnessing the immunomodulatory potential of natural products in precision medicine—a comprehensive review
Traditional medicine systems worldwide utilize natural products (NPs), including plant-derived compounds, minerals, and organisms, harnessing their healing potential. NPs offer a rich source of pote
[...] Read more.
Traditional medicine systems worldwide utilize natural products (NPs), including plant-derived compounds, minerals, and organisms, harnessing their healing potential. NPs offer a rich source of potential drug candidates, driving innovation in drug discovery. Recent breakthroughs have reignited interest in harnessing the therapeutic benefits of natural compounds. Clinical applications of NP-based immunotherapies, such as curcumin and resveratrol in cancer treatment, highlight their diverse pharmacological properties. However, despite these advancements, challenges persist in the clinical implementation of NPs. Issues such as standardization, regulatory approval, and supply sustainability remain significant hurdles. Overcoming these limitations requires a concerted effort to address the complexities of NP drug development. Nevertheless, ongoing research efforts and interdisciplinary collaboration hold promise for advancing NP-based therapeutics, paving the way for the development of innovative treatments for various diseases. In the world of precision medicine, a new chapter unfolds as NPs join the therapeutic journey. The exploration of NPs as sources of bioactive compounds has revealed promising prospects for precision therapeutics in medicine. This article explores the therapeutic potential of NPs within the context of precision medicine. It examines the intricate pathways through which bioactive compounds derived from nature offer tailored therapeutic prospects, emphasizing their role in precision medicine interventions. Exploring the synergy between NPs and precision therapeutics at a molecular level, this article delineates the exciting prospect of customized treatments, signifying a transformative impact on modern medical care. The review article further highlights their potential in tailoring treatments based on individual genetic makeup and disease characteristics. Additionally, it discusses challenges and prospects, addressing issues of sourcing, standardization, scalability, and regulatory considerations to realize the full therapeutic potential of NPs.
Maya G. Pillai, Helen Antony
View:1336
Download:44
Times Cited: 0
Traditional medicine systems worldwide utilize natural products (NPs), including plant-derived compounds, minerals, and organisms, harnessing their healing potential. NPs offer a rich source of potential drug candidates, driving innovation in drug discovery. Recent breakthroughs have reignited interest in harnessing the therapeutic benefits of natural compounds. Clinical applications of NP-based immunotherapies, such as curcumin and resveratrol in cancer treatment, highlight their diverse pharmacological properties. However, despite these advancements, challenges persist in the clinical implementation of NPs. Issues such as standardization, regulatory approval, and supply sustainability remain significant hurdles. Overcoming these limitations requires a concerted effort to address the complexities of NP drug development. Nevertheless, ongoing research efforts and interdisciplinary collaboration hold promise for advancing NP-based therapeutics, paving the way for the development of innovative treatments for various diseases. In the world of precision medicine, a new chapter unfolds as NPs join the therapeutic journey. The exploration of NPs as sources of bioactive compounds has revealed promising prospects for precision therapeutics in medicine. This article explores the therapeutic potential of NPs within the context of precision medicine. It examines the intricate pathways through which bioactive compounds derived from nature offer tailored therapeutic prospects, emphasizing their role in precision medicine interventions. Exploring the synergy between NPs and precision therapeutics at a molecular level, this article delineates the exciting prospect of customized treatments, signifying a transformative impact on modern medical care. The review article further highlights their potential in tailoring treatments based on individual genetic makeup and disease characteristics. Additionally, it discusses challenges and prospects, addressing issues of sourcing, standardization, scalability, and regulatory considerations to realize the full therapeutic potential of NPs.