Cristóbal N. Aguilar who is the Editorial Board Member of Exploration of Foods and Foodomics had no involvement in the decision-making or the review process of this manuscript. The other authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
The author Karen De La Rosa-Esteban thanks SECIHTI México for scholarship support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Banožić M, Babić J, Jokić S. Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review.Ind Crops Prod. 2020;144:112009. [DOI]
Stafussa AP, Maciel GM, Rampazzo V, Bona E, Makara CN, Demczuk B Jr, et al. Bioactive compounds of 44 traditional and exotic Brazilian fruit pulps: phenolic compounds and antioxidant activity.Int J Food Prop. 2018;21:106–18. [DOI]
Zabot GL, Schaefer Rodrigues F, Polano Ody L, Vinícius Tres M, Herrera E, Palacin H, et al. Encapsulation of Bioactive Compounds for Food and Agricultural Applications.Polymers (Basel). 2022;14:4194. [DOI] [PubMed] [PMC]
Martín Ortega AM, Segura Campos MR. Bioactive compounds as therapeutic alternatives.In: Bioactive compounds. Woodhead Publishing; 2019. pp. 247–64. [DOI]
Thakur M, Singh K, Khedkar R. Phytochemicals: extraction process, safety assessment, toxicological evaluations, and regulatory issues.In: Functional and Preservative Properties of Phytochemicals. Academic Press; 2020. pp. 341–61. [DOI]
Xiao J, Bai W. Bioactive phytochemicals.Crit Rev Food Sci Nutr. 2019;59:827–9. [DOI] [PubMed]
Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method.Molecules. 2023;28:887. [DOI] [PubMed] [PMC]
Hossen I, Hua W, Ting L, Mehmood A, Jingyi S, Duoxia X, et al. Phytochemicals and inflammatory bowel disease: a review.Crit Rev Food Sci Nutr. 2020;60:1321–45. [DOI] [PubMed]
Gullón P, Gullón B, Romaní A, Rocchetti G, Lorenzo JM. Smart advanced solvents for bioactive compounds recovery from agri-food by-products : A review.Trends Food Sci Techno. 2020;101:182–97. [DOI]
Srivastava N, Singh A, Kumari P, Nishad JH, Gautam VS, Yadav M, et al. Advances in extraction technologies: isolation and purification of bioactive compounds from biological materials. In: Sinha RP, Häder DP, editors. Natural bioactive compounds. Academic Press; 2021. pp. 409–33. [DOI]
Banat IM, Carboué Q, Saucedo-Castañeda G, de Jesús Cázares-Marinero J. Biosurfactants: The green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology.Bioresour Technol. 2021;320:124222. [DOI] [PubMed]
Buenrostro-Figueroa JJ, Nevárez-Moorillón GV, Chávez-González ML, Sepúlveda L, Ascacio-Valdés JA, Aguilar CN, et al. Improved Extraction of High Value-Added Polyphenols from Pomegranate Peel by Solid-State Fermentation.Ferment. 2023;96:530. [DOI]
Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review.Biotechnol Adv. 2011;29:365–73. [DOI] [PubMed]
Abbas M, Saeed F, Anjum FM, Tufail T, Bashir MS, Ishtiaq A, et al. Natural polyphenols: An overview.Int J Food Prop. 2017;20:1689–99. [DOI]
Maroun RG, Rajha HN, El Darra N, El Kantar S, Chacar S, Debs E, et al. Emerging technologies for the extraction of polyphenols from natural sources. Polyphenols: Properties, Recovery, and Applications. In: Galanakis CM, editor. Polyphenols: Properties, recovery, and applications. Woodhead Publishing; 2018. pp. 265–93. [DOI]
Belščak-Cvitanović A, Ksenija D, Huđek A, Bačun-Družina V, Komes D. Overview of polyphenols and their propieties. In: Galanakis CM, editor. Polyphenols: Properties, Recovery, and Applications. Woodhead Publishing; 2018. pp. 3–44. [DOI]
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, et al. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study.Foods. 2020;10:37. [DOI] [PubMed] [PMC]
Izábal-Carvajal AL, Sepúlveda L, Chávez-González ML, Torres-León C, Aguilar CN, Ascacio-Valdés JA. Extraction of Bioactive Compounds via Solid-State Fermentation Using Aspergillus niger GH1 and Saccharomyces cerevisiae from Pomegranate Peel.Waste. 2023;1:806–14. [DOI]
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential.Food Chem. 2021;338:127535. [DOI] [PubMed]
Prabhu S, Molath A, Choksi H, Kumar S. Classifications of polyphenols and their potential application in human health and diseases.Int J Physiol Nutr Phys Educ. 2021;6:293–301. [DOI]
Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From Theory to Practice.Foods. 2021;10:2595. [DOI] [PubMed] [PMC]
Bilawal A, Ishfaq M, Gantumur M-A, Qayum A, Shi R, Fazilani SA, et al. A review of the bioactive ingredients of berries and their applications in curing diseases.Food Biosci. 2021;44:101407. [DOI]
Reddy VP, Aryal P, Robinson S, Rafiu R, Obrenovich M, Perry G. Polyphenols in Alzheimer’s Disease and in the Gut-Brain Axis.Microorganisms. 2020;8:199. [DOI] [PubMed] [PMC]
Silva RFM, Pogačnik L. Polyphenols from Food and Natural Products: Neuroprotection and Safety.Antioxidants (Basel). 2020;9:61. [DOI] [PubMed] [PMC]
Guven H, Arici A, Simsek O. Flavonoids in Our Foods: A Short Review.J Basic Clin Heal Sci. 2019;3:96–106. [DOI]
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, et al. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement.Semin Cancer Biol. 2022;80:256–75. [DOI] [PubMed]
Estrada-Gil LE, Sanchez- Loredo E, Chávez-González ML, Flores-Gallegos AC, Govea-Salas M, Rodríguez-Herrera R, et al. Polyphenolic Treatment and Prevention of Alzheimer ’ s Disease.J Bioprocess Chem Technol. 2023;15:1–10.
Meresman GF, Götte M, Laschke MW. Plants as source of new therapies for endometriosis: a review of preclinical and clinical studies.Hum Reprod Update. 2021;27:367–92. [DOI] [PubMed]
Henss L, Auste A, Schürmann C, Schmidt C, von Rhein C, Mühlebach MD, et al. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection.J Gen Virol. 2021;102:001574. [DOI] [PubMed] [PMC]
Yang D, Wang T, Long M, Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine.Oxid Med Cell Longev. 2020;2020:8825387. [DOI] [PubMed] [PMC]
Bondonno NP, Bondonno CP, Hodgson JM, Ward NC, Croft KD. The Efficacy of Quercetin in Cardiovascular Health.Curr Nutr Rep. 2015;4:290–303. [DOI]
Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, Osuna A. Antihypertensive effects of the flavonoid quercetin.Pharmacol Rep. 2009;61:67–75. [DOI] [PubMed]
Cheng HS, Ton SH, Abdul Kadir K. Ellagitannin geraniin: a review of the natural sources, biosynthesis, pharmacokinetics and biological effects.Phytochem Rev. 2017;16:159–93. [DOI]
Estrada-Gil L, Contreras-Esquivel JC, Flores-Gallegos C, Zugasti-Cruz A, Govea-Salas M, Mata-Gómez MA, et al. Recovery of Bioactive Ellagitannins by Ultrasound/Microwave-Assisted Extraction from Mexican Rambutan Peel (Nephelium lappaceum L.).Molecules. 2022;27:1592. [DOI] [PubMed] [PMC]
Djedjibegovic J, Marjanovic A, Panieri E, Saso L. Ellagic Acid-Derived Urolithins as Modulators of Oxidative Stress.Oxid Med Cell Longev. 2020;2020:5194508. [DOI] [PubMed] [PMC]
Jayatunga DPW, Hone E, Khaira H, Lunelli T, Singh H, Guillemin GJ, et al. Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer’s Disease.Nutrients. 2021;13:3744. [DOI] [PubMed] [PMC]
Hernández-Hernández C, Aguilar CN, Rodríguez-Herrera R, Flores-Gallegos AC, Morlett-Chávez J, Govea-Salas M, et al. Rambutan(Nephelium lappaceum L.):Nutritional and functional properties.Trends Food Sci Technol. 2019;85:201–10. [DOI]
Thitilertdecha N, Chaiwut P, Saewan N. In vitro antioxidant potential of Nephelium lappaceum L. rind extracts and geraniin on human epidermal keratinocytes.Biocatal Agric Biotechnol. 2020;23:101482. [DOI]
Li J, Wang S, Yin J, Pan L. Geraniin induces apoptotic cell death in human lung adenocarcinoma A549 cells in vitro and in vivo.Can J Physiol Pharmacol. 2013;91:1016–24. [DOI] [PubMed]
Looi D, Goh BH, Khan SU, Ahemad N, Palanisamy UD. Metabolites of the ellagitannin, geraniin inhibit human ACE; in vitro and in silico evidence.Int J Food Sci Nutr. 2021;72:470–7. [DOI] [PubMed]
Evtyugin DD, Magina S, Evtuguin DV. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review.Molecules. 2020;25:2745. [DOI] [PubMed] [PMC]
Banc R, Rusu ME, Filip L, Popa DS. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut-Brain Axis.Foods. 2023;12:270. [DOI] [PubMed] [PMC]
Cheshomi H, Bahrami AR, Rafatpanah H, Matin MM. The effects of ellagic acid and other pomegranate (Punica granatum L.) derivatives on human gastric cancer AGS cells.Hum Exp Toxicol. 2022;41:9603271211064534. [DOI] [PubMed]
Hernández-Hernández C, Aguilar CN, Flores-Gallegos AC, Sepúlveda L, Rodríguez-Herrera R, Morlett-Chávez J, et al. Preliminary Testing of Ultrasound/Microwave-Assisted Extraction (U/M-AE) for the Isolation of Geraniin from Nephelium lappaceum L. (Mexican variety) peel. processes. 2020;8:572. [DOI]
Ismail EN, Azmi N, Jantan I. Ellagic Acid Protects against Activation of Microglia by Inhibiting MAPKs and NF-κB Signalling.Indian J Pharm Educ Res. 2020;54:S529–36. [DOI]
Phuong NNM, Le TT, Van Camp J, Raes K. Evaluation of antimicrobial activity of rambutan (Nephelium lappaceum L.) peel extracts.Int J Food Microbiol. 2020;321:108539. [DOI] [PubMed]
Yang J, Guo Y, Henning SM, Chan B, Long J, Zhong J, et al. Ellagic Acid and Its Microbial Metabolite Urolithin A Alleviate Diet-Induced Insulin Resistance in Mice.Mol Nutr Food Res. 2020;64:e2000091. [DOI] [PubMed] [PMC]
Cisneros-Zevallos L, Bang WY, Delgadillo-Puga C. Ellagic Acid and Urolithins A and B Differentially Regulate Fat Accumulation and Inflammation in 3T3-L1 Adipocytes While Not Affecting Adipogenesis and Insulin Sensitivity.Int J Mol Sci. 2020;21:2086. [DOI] [PubMed] [PMC]
Eun H, Lee SY. Metabolic engineering and fermentation of microorganisms for carotenoids production.Curr Opin Biotechnol. 2024;87:103104. [DOI] [PubMed]
Bouyahya A, Bakrim S, Chamkhi I, Taha D, Omari NE, Mneyiy NE, et al. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights.Biomed Pharmacother. 2024;170:115989. [DOI] [PubMed]
Ibrahim GS, El-Shall FN, Arafa AA, Shalabi A, El Awady M. Bio-production and characterization of carotenoid yellow pigment from Kocuria sp. GMA and exploring its sustainable antioxidant, antimicrobial and antibiofilm properties.Egypt J Chem. 2024;67:57–68. [DOI]
Kidoń M, Uwineza PA. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds.Molecules. 2022;27:3049. [DOI] [PubMed] [PMC]
Sereti F, Alexandri M, Papadaki A, Papapostolou H, Kopsahelis N. Carotenoids production by Rhodosporidium paludigenum yeasts: Characterization of chemical composition, antioxidant and antimicrobial properties.J Biotechnol. 2024;386:52–63. [DOI] [PubMed]
Wei J, Ye Z, Li Y, Li Y, Zhou Z. Citrus Carotenoid Extracts Promote ROS Accumulation and Induce Oxidative Stress to Exert Anti-Proliferative and Pro-Apoptotic Effects in MDA-MB-231 Cells.Antioxidants (Basel). 2024;13:264. [DOI] [PubMed] [PMC]
Sharma I, Khare N, Rai A. Carotenoids: Sources, Bioavailability and Their Role in Human Nutrition.In: Dietary Carotenoids - Sources, Properties, and Role in Human Health. 1st ed. London: IntechOpen; 2024. p. 160. [DOI]
Maoka T. Carotenoids as natural functional pigments.J Nat Med. 2020;74:1–16. [DOI] [PubMed] [PMC]
Dadon SB, Reifen R. Vitamin A and the epigenome.Crit Rev Food Sci Nutr. 2017;57:2404–11. [DOI] [PubMed]
Gutiérrez-Grijalva EP, López-Martínez LX, Contreras-Angulo LA, Elizalde-Romero CA, Heredia JB. Plant Alkaloids: Structures and Bioactive Properties.In: Plant-derived Bioactives. Singapore: Springer Singapore; 2020. pp. 85–117. [DOI]
Alasvand M, Assadollahi V, Ambra R, Hedayati E, Kooti W, Peluso I. Antiangiogenic Effect of Alkaloids.Oxid Med Cell Longev. 2019;2019:9475908. [DOI] [PubMed] [PMC]
Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, et al. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders.Int J Biol Sci. 2018;14:341–57. [DOI] [PubMed] [PMC]
Ma H, He K, Zhu J, Li X, Ye X. The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: A systematic review of modern pharmacological studies of the traditional herbal medicine.Fitoterapia. 2019;134:210–20. [DOI] [PubMed]
Zheng J, Deng L, Chen M, Xiao X, Xiao S, Guo C, et al. Elaboration of thorough simplified vinca alkaloids as antimitotic agents based on pharmacophore similarity.Eur J Med Chem. 2013;65:158–67. [DOI] [PubMed]
Choudhary M, Joshi S, Bhagyawant SS, Srivastava N. Advances in Fermentation Technology: Principle and Their Relevant Applications.Princ Appl Ferment Technol. 2018;53–63. [DOI]
Garro MS, Rivas FP, Garro OA. Solid state fermentation in food processing: Advances in reactor design and novel applications. In: Innovative Food Processing Technologies. Elsevier; 2021. pp. 165–82. [DOI]
Cerda-Cejudo ND, Buenrostro-Figueroa JJ, Sepúlveda L, Torres-León C, Chávez-González ML, Ascacio-Valdés JA, et al. Recovery of ellagic acid from mexican rambutan peel by solid-state fermentation-assisted extraction.Food Bioprod Process. 2022;134:86–94. [DOI]
Ramirez-Esparza U, De La Rosa-Esteban AK, Baeza-Jiménez R, Martínez-Ávila G, Ascacio-Valdés JA, Buenrostro-Figueroa JJ. Recent advances in the extraction of phenolic compounds using biotechnological processes. In: Chávez González ML, Buenrostro Figueroa JJ, Verma DK, Aguilar CN, editors. Enzymatic Process for Food Valorization. Academic Press; 2024. pp. 157–72. [DOI]
Costa JAV, Treichel H, Kumar V, Pandey A. Advances in Solid-State Fermentation. Current Developments in Biotechnology and Bioengineering. Elsevier B.V.; 2018. pp. 1–17. [DOI]
De León-Medina JC, Buenrostro-Figueroa JJ, Sepúlveda L, Aguilar CN, Ascacio-Valdés JA. Fungal biodegradation of ellagitannins extracted from rambutan peel.Food Bioprod Process. 2023;141:81–90. [DOI]
Cerda-Cejudo ND, Buenrostro-Figueroa JJ, Sepúlveda-Torre L, Torres-León C, Chávez-González ML, Ascacio-Valdés JA, et al. Solid-State Fermentation for the Recovery of Phenolic Compounds from Agro-Wastes.Resources. 2023;12:1–17. [DOI]
Yepes-Betancur DP, Márquez-Cardozo CJ, Cadena-Chamorro EM, Martinez-Saldarriaga J, Torres-León C, Ascacio-Valdes A, et al. Solid-state fermentation – assisted extraction of bioactive compounds from hass avocado seeds.Food Bioprod Process. 2021;126:155–63. [DOI]
Kondo M, Mulianda R, Matamura M, Shibata T, Mishima T, Jayanegara A, et al. Validation of a phenol-sulfuric acid method in a microplate format for the quantification of soluble sugars in ruminant feeds.Anim Sci J. 2021;92:e13530. [DOI] [PubMed]
López-Gómez JP, Manan MA, Webb C. Solid-state fermentation of food industry wastes. In: Kosseva MR, Webb C, editors. Food industry wastes. 2nd ed. Academic Press; 2020. pp. 135–61. [DOI]
Dias E, Ebdon J, Taylor H. Estimating the concentration of viral pathogens and indicator organism in the final effluent of wastewater treatment processes using stochastic modelling.Microb Risk Anal. 2018;11:47–56. [DOI]
de Melo Santos SF, de Sousa CAB, de Almeida AF, Santos FA, Oliveira CZ, de Carvalho Cardoso AL, et al. Solid-state fermentation: Use of Agroindustrial Residues. In: Maddela NR, García Cruzatty LC, Chakraborty S, editors. Advances in the Domain of Environmental Biotechnolgy. Springer; 2021. pp. 27–58. [DOI]
Crafack M, Keul H, Eskildsen CE, Petersen MA, Saerens S, Blennow A, et al. Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate.Food Res Int. 2014;63:306–16. [DOI]
Cano y Postigo LO, Jacobo-Velázquez DA, Guajardo-Flores D, Garcia Amezquita LE, García-Cayuela T. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility.Food Biosci. 2021;41:100926. [DOI]
Šelo G, Planinić M, Tišma M, Tomas S, Komlenić DK, Bucić-Kojić A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation.Foods. 2021;10:927. [DOI] [PubMed] [PMC]
Rudakiya DM. Strategies to improve solid-state fermentation technology. In: Srivastava N, Srivastava M, Mishra PK, Ramteke PW, Singh RL, editors. New and Future Developments in Microbial Biotechnology and Bioengineering: From Cellulose to Cellulase: Strategies to Improve Biofuel Production. Elsevier; 2019. pp. 155–80. [DOI]
Vandenberghe LPS, Pandey A, Carvalho JC, Letti LAJ, Woiciechowski AL, Karp SG, et al. Solidstate fermentation technology and innovation for the production of agricultural and animal feed bioproducts.Syst Microbiol Biomanuf. 2020;1:142–65. [DOI]
Cerda-Cejudo ND, Buenrostro-Figueroa JJ, Sepúlveda L, Estrada-Gil LE, Torres-León C, Chávez-González ML, et al. Enhancing the Release of Ellagic Acid from Mexican Rambutan Peel Using Solid-State Fermentation.Biomass. 2024;4:1005–16. [DOI]
Meini MR, Cabezudo I, Galetto CS, Romanini D. Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae.Food Biosci. 2021;42:101168. [DOI]
Torres-León C, Ramírez-Guzman N, Londoño-Hernandez L, Martinez-Medina G, Díaz-Herrera R, Navarro-Macias V, et al. Food waste and byproducts: an opportunity to minimize malnutrition and hunger in developing countries.Front Sustain Food Syst. 2018;2:52. [DOI]
Srivastava N, Srivastava M, Ramteke W, Mishra K. Solid-State Fermentation Strategy for Microbial Metabolites Production: An Overview.In: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2019. pp. 345–54. [DOI]
Prado Barragán LA, Figueroa JJB, Rodríguez Durán LV, Aguilar González CN, Hennigs C. Fermentative Production Methods.In: Biotransformation of Agricultural Waste and By-Products. Elsevier; 2016. pp. 189–217. [DOI]
Polania Rivera AM, Ramírez Toro C, Londoño L, Bolivar G, Ascacio JA, Aguilar CN. Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity.J Food Meas Charact. 2023;17:586–606. [DOI]
Coronado-Contreras A, Ruelas-Chacón X, Reyes-Acosta YK, Dávila-Medina MD, Ascacio-Valdés JA, Sepúlveda L. Valorization of Prickly Pear Peel Residues (Opuntia ficus-indica) Using Solid-State Fermentation.Foods. 2023;12:4213. [DOI] [PubMed] [PMC]
De La Rosa-Esteban K, Sepúlveda L, Chávez-González ML, Torres-León C, Estrada-Gil LE, Aguilar CN, et al. Valorization of Mexican Rambutan Peel through the Recovery of Ellagic Acid via Solid-State Fermentation Using a Yeast.Fermentation. 2023;9:1–13. [DOI]
Wiles C, Watts P. Continuous process technology: a tool for sustainable production.Green Chem. 2014;16:55–62.
Rani R, Kumar A, Soccol CR, Pandey A. Recent advances in solid-state fermentation.Biochem Eng J. 2009;44:13–8. [DOI]
Canabarro NI, Alessio C, Foletto EL, Kuhn RC, Priamo WL, Mazutti MA. Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor.Renew Energy. 2017;102:12–7. [DOI]
Londoño-Hernandez L, Ruiz HA, Ramírez Toro C, Ascacio-Valdes A, Rodriguez-Herrera R, Aguilera-Carbo A, et al. Advantages and Progress Innovations of Solid-State Fermentation to Produce Industrial Enzymes. In: Naveen Kumar A, Jitendra M, Vaibhav M, editors. Microbial Enzymes: Roles and Applications in Industries. Springer Singapore; 2016. pp. 87–113. [DOI]
Farinas CS. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector.Renew Sustain Energy Rev. 2015;52:179–88. [DOI]
Lorenzoni ASG, Aydos LF, Klein MP, Ayub MAZ, Rodrigues RC, Hertz PF. Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: comparison between in fluidized and packed bed reactors.J Mol Catal B Enzym. 2014;111:51–5. [DOI]
Buenrostro-Figueroa J, Huerta-Ochoa S, Prado-Barragán A, Ascacio-Valdés J, Sepúlveda L, Rodríguez R, et al. Continuous production of ellagic acid in a packed-bed reactor.Process Biochem. 2014;49:1595–600. [DOI]
Taavoni S, Habibi A, Varmira K, Alipour S. Kinetics of continuous production of β‐carotene in an airlift bioreactor.Asian-Pacific J Chem Eng. 2017;13:1–10. [DOI]
Jim UE, Santiago SG, Vargas A. Feedback control strategy for optimizing biohydrogen production from organic solid waste in a discontinuous process.Int J Hydrogen Energy. 2021;46:35831–9. [DOI]
Yang Y, Sha M. A Beginner’s Guide to Bioprocess Modes – Batch, Fed- Batch, and Continuous Fermentation.Eppendorf. 2019;408:1–16.
Carsanba E, Pintado M, Oliveira C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast.Pharmaceuticals (Basel). 2021;14:295. [DOI] [PubMed] [PMC]
Cerda A, Gea T, Vargas-García MC, Sánchez A. Towards a competitive solid state fermentation: Cellulases production from coffee husk by sequential batch operation and role of microbial diversity.Sci Total Environ. 2017;589:56–65. [DOI] [PubMed]
Yi AP. Principles and Case Studies of Fed Batch Fermentation and Continuous Fermentation.J Clin Nurs Res. 2022;6:99–104. [DOI]